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Special Series: Teaching Geometry 

There are many reasons for recommending that schools pay 
particular attention to children’s achievement in geometry. 
As a subject in K-12 mathematics education, geometry 
instruction involves helping students to learn spatial rela-
tions and properties of shapes, which are crucial for students 
to succeed in science, technology, engineering, and mathe-
matics (STEM) subjects at the college level (Hsi et al., 1997; 
Wai et  al., 2010). However, geometry instruction is often 
overlooked in current education research and practice in the 
United States (Clements & Sarama, 2011). A historical 
review of the geometry curriculum in U.S. schools (Sinclair, 
2008) suggested a long history of neglecting geometry 
instruction. Not until 1844, when geometry began to be 
required for college entrance, did U.S. high school adminis-
trators and teachers realize the necessity to add this subject 
to the mathematics curriculum. Therefore, the geometry cur-
riculum was initiated with an elite college-bound status pos-
sibly because of Euclidean geometry’s link to ancient Greek 
scholars, whereas other mathematics domains are typically 
rooted in everyday problem solving and applications.

U.S. students’ performance in geometry can be consid-
ered less than satisfactory. Although fourth-grade U.S. stu-
dents showed progress in numerical subscales in the Trends 
in International Mathematics and Science Study (TIMSS) 

2015 report, there was a significant drop of 9 standardized 
points from the 2011 testing performance in the subscale of 
Geometric Shapes and Measures (Provasnik et al., 2016). 
An earlier study showed that although TIMSS reported sig-
nificant improvement in U.S. eighth-graders’ algebra per-
formance between 1999 and 2003, significant improvement 
was not found in their geometry performance during that 
period (Gonzales et al., 2004).

Theoretical Framework

The categorization of subtypes of math learning disabili-
ties or mathematics difficulties has been in discussion. 
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Abstract
This study analyzed the Trends in International Mathematics and Science Study 2011 data on fourth-grade U.S. students’ 
mathematics performance to answer four research questions: (a) How did U.S. students’ geometry performance compare 
with their performance on the other mathematics subscales? (b) What were the patterns of student achievement among 
the mathematics subscales? (c) Was there a group of students who demonstrated specific difficulties in geometry only? 
and (d) Which demographic variables contributed to students’ classification in the group with geometry difficulties? We 
found that (a) U.S. students’ performance was poorer on the Geometry subscale than on other mathematics subscales; 
(b) using latent profile modeling, we identified a group of students with the lowest scores across all three mathematics 
subscales who showed a significant discrepancy between Geometry and the other subscales that did not exist within the 
high-achieving and average-achieving groups; and (c) gender, age, home language, race, and preference for mathematics and 
science significantly influenced the probability of being classified in the group with the lowest performance and the largest 
gap between Geometry and other mathematics subscales. Implications for educational theory and practice are discussed.
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Some researchers have argued that students’ particular dif-
ficulties in geometry may represent a unique and specific 
mathematics learning disability subtype, different from 
other subtypes of mathematics difficulties. For example, 
Geary and Hoard (2005) described three subtypes of stu-
dents with mathematics difficulties, including procedural 
(i.e., children present a delay in acquiring simple arithme-
tic strategies), semantic memory (i.e., children show defi-
cits in retrieval of facts because of a long-term memory 
deficit), and visual-spatial difficulties (i.e., children show 
deficits in the spatial representation). Karagiannakis et al. 
(2014) categorized mathematics learning disabilities into 
four subcategories: core number, memory retrieval and 
processing, reasoning, and visual-spatial. Similar concep-
tual categorizations were also advocated by the National 
Center for Learning Disabilities (2006) who listed visuo-
spatial impairments as a distinct area of weakness exhib-
ited by many students with mathematics difficulties. 
Recently, Bartelet et  al. (2014) assessed more than 200 
elementary school children with mathematics learning dis-
abilities with a battery of cognitive instruments. With a 
data-driven approach, they reported six distinct groups of 
mathematics learning disabilities, including a spatial dif-
ficulties group, who were particularly weak in visual 
working memory. Evidence from neuropsychology has 
demonstrated that spatial deficits may be associated with 
dysfunction in posterior regions of the right hemisphere 
and may be related to the parietal cortex of the left hemi-
sphere (Malhotra et al., 2009).

Spatial abilities refer to the ability to understanding, rea-
son, retain, retrieve, and transform visual images, and are 
highly predictive to students’ geometry performance 
(Clements et al., 1997; Giofrè et al., 2013; Kyttälä & Lehto, 
2008; Spelke et al., 2010), and interestingly this correlation 
is even greater in students with poorer geometry perfor-
mance (Battista, 1990). Deficits in spatial abilities have 
been documented to explain students’ difficulties with 
geometry (Clements et al., 1997; Passolunghi & Mammarella, 
2012). Given the strong relation between the geometry sub-
ject and spatial abilities, it sounds plausible to hypothesize 
that geometry difficulties may represent a unique and 
specific learning difficulty due to the high reliance on 
spatial abilities.

Contrarily, the construct of “geometry difficulty” as a 
specific mathematics learning difficulty can be questioned 
for a few reasons. First, many mathematical tasks require 
spatial thinking (van Garderen, 2006), and a deficit in spa-
tial abilities may affect not only geometry achievement but 
also a broad range of mathematics domains. Second, the 
reasons why students encounter geometry difficulties may 
be multifaceted: A recent meta-analysis (Peng et al., 2016) 
found that the literature (Giofrè et  al., 2013, 2014; 
Passolunghi et al., 2008) reported a weak relation between 
geometry achievement and all categories of working 

memory, including visual-spatial working memory. On top 
of spatial abilities, students’ geometry achievement is also 
influenced by many other cognitive factors, such as verbal 
working memory (Bizarro et al., 2018), fluid intelligence, 
and reasoning (Giofrè et al., 2014). In particular, because 
geometry includes considerable proof-oriented problems, it 
is typically considered highly related to the deductive think-
ing (Dawkins, 2015) and verbal logical reasoning (Battista, 
1990). Geometry learning difficulties can also be related to 
non-cognitive factors, including motivation and persistence 
(Nichols, 1996), emotions (Bailey et al., 2014), meta-cogni-
tion abilities (Aydın & Ubuz, 2010), knowledge (Bokosmaty 
et  al., 2015), and how they use knowledge (Lawson & 
Chinnappan, 1994). And these non-cognitive problems uni-
versally exist in all mathematical domains for struggling 
students, which also challenges the hypothesis that geome-
try difficulties should be viewed as a specific and unique 
subtype of math learning difficulty.

That said, there has been sparse research that provides 
empirical evidence to support the above theoretical conjec-
tures that geometry learning difficulties are specific and 
unique among mathematics learning difficulties. There is 
also little research on the relation between performance on 
geometry and other mathematics content domains. There is 
a need to empirically explore the existence of “specific 
geometry difficulties” by investigating whether there is a 
special group of students who demonstrate a discrepancy 
between geometry achievement and achievement in other 
mathematics areas. Specifically, we will examine whether 
(a) there is a group with difficulties in geometry who show 
average or above-average performance in other mathemat-
ics areas, or (b) there is a group showing difficulties with 
performance on multiple mathematics subscales and more 
severe difficulties on the Geometry subscale than on other 
mathematics subscales. The availability of existing large-
scale achievement assessment data, such as TIMSS, makes 
it possible to examine the existence of such groups.

Research Questions

In the present study, we aimed to answer four research ques-
tions based on an analysis of TIMSS-2011 fourth-grade 
mathematics data:

Research Question 1: How did U.S. students’ geometry 
performance compare with their performance on the 
other mathematics subscales?
Research Question 2: What were the patterns of student 
achievement among the mathematics subscales?
Research Question 3: Was there a group of students 
who demonstrated specific difficulties in geometry only?
Research Question 4: Which demographic variables 
contributed to students’ classification in the group with 
geometry difficulties?
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Method

TIMSS in Mathematics
The TIMSS provides reliable and timely data on school 
mathematics and science achievement in the United States 
and other countries. TIMSS data have been collected every 4 
years from students in fourth and eighth grades since 1995. In 
this research, we analyzed TIMSS (2011) fourth-grade data 
to examine U.S. students’ geometry performance. It is worth 
noting that the analyses are nationally generalizable with the 
available sampling weights (Foy et  al., 2013). The 2011 
mathematics assessment at the fourth-grade level included 
three content subscales, namely, Data Display (Display), 
Geometric Shapes and Measures (Geometry), and Number. 
TIMSS also provided demographic and related information 
data about the participating students. We chose the fourth-
grade rather than the eighth-grade data because fourth-grade 
geometry is closer to so-called “intuitive geometry,” which is 
independent from instruction, experiences, and culture 
(Giofrè et  al., 2013). In contrast, eighth-grade geometry 
involves a greater proportion of geometry academic content 
that is closely dependent on learning and education and 
closely related to other mathematics subjects such as algebra 
(Giofrè et  al., 2014). Specifically, for fourth graders, the 
TIMSS Geometry scale includes items such as “Length of 
string pulled straight,” “Position of shape after a 1 2 turn,” 
“Pieces of cardboard to make shape,” “Rotate the shape 1 4 
clockwise,” and “Relating net with its 3-D figure.”

TIMSS provides five plausible values (von Davier et al., 
2009) per content subscale. Within the context of large-
scale assessments, plausible values are random numbers 
that are drawn from the distribution of scores of individual 
students—that is, from the marginal posterior distribution. 
Multiple plausible values are more accurate and can better 
capture the expected values and variance in subgroups, 
especially when the true distribution of mastery or accurate 
estimates of individual performance are difficult to obtain 
on short tests. The main challenge of analyzing plausible 
values is based on the method of multiple imputation, which 
is widely used to analyze missing data (Schafer & Graham, 
2002). With latent variables, multiple imputation models 
are more difficult to converge, with fewer fit statistics avail-
able for model assessment. For this research, we chose 
Mplus (L. K. Muthén & Muthén, 1998–2017) to analyze the 
five sets of plausible values with multiple imputation and 
accordingly used all the fit and descriptive statistics that 
were available in the software for analysis. For missing val-
ues, missing at random was assumed. Finally, appropriate 
sampling weights have been applied based on TIMSS User 
Guide (Foy et al., 2013). Note that Mplus was the only soft-
ware we found satisfying our requirements, namely, latent 
profile analysis (LPA) with covariate, multiple imputation, 
and sampling weights.

Data Analysis Plan

We followed a three-step analysis. First, we calculated the 
mean scores of the three mathematics subscales of TIMSS 
and compared the difference between any of the two sub-
scales using Z tests to answer the first research question. 
We also provided correlations between the three subscales. 
Second, to answer Research Questions 2 and 3, we used 
LPA to classify students into different groups. We hypoth-
esized a group of students would perform poorly on the 
Geometry subscale only and would perform at average or 
above-average levels on the other mathematics subscales. 
Similar to latent class analysis (LCA), LPA is a form of 
mixture modeling used to identify different latent classes 
of individuals with similar response patterns based on a 
set of observed variables (Lubke & Muthén, 2005). The 
difference is that the LPA is for continuous observed data, 
whereas the LCA is for categorical observed data. To 
determine the number of classes, we compared a range of 
latent class models with different number of classes in 
terms of their relative model fit. For LCA or LPA with 
multiple imputation in Mplus, three fit indices are avail-
able, that is, Akaike’s (1974) information criterion (AIC), 
Schwarz’s (1978) Bayesian information criterion (BIC), 
and entropy. Entropy is an index to measure the variabil-
ity, or chaos, in a stochastic system, with higher values 
indicating greater precision of classification. Entropy with 
values approaching 1 indicates clear delineation of classes, 
while those above .8 are generally considered acceptable 
in assigning individual cases into appropriate classes 
(Celeux & Soromenho, 1996).

Third, to answer Research Question 4, we examined the 
effects of demographic variables on class membership using 
the LPA with covariates. LPA or LCA with covariates is anal-
ogous to a multinomial logistic regression approach with 
latent class membership serving as a categorical dependent 
variable and the covariates as independent variables (B. O. 
Muthén & Satorra, 1995). Among different approaches to 
incorporate covariates in latent classes (Vermunt, 2010), the 
one-step approach was adopted due to the exploratory nature 
of the present research. The one-step approach reduces the 
methodological difficulties in addressing latent classes with 
plausible values. In a more confirmatory or high-stake con-
text, however, the more sophisticated three-step approach 
(see Vermunt, 2010) could be more appropriate.

We tested nine demographic covariates in the latent class 
models of interest: (a) gender, (b) age, (c) English (English 
spoken at home, 1 = always to 4 = never), (d) Spanish 
versus other non-English language spoken at home, (e) how 
much the student likes mathematics (likemath; 1 = like to 3 
= not like), (f) how much the student likes science (likesci; 
1 = like to 3 = not like), (g) White or Black (WvsB), (h) 
White or Hispanic (WvsH), and (i) White or other non-
Black or Hispanic races (WvsO). The covariates were 
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included in the model one by one to avoid the possible 
impact of multicollinearity among the covariates.

Results

Descriptive Statistics

Descriptive statistics among the three mathematics sub-
scales of TIMSS (i.e., Display, Geometry, and Number) are 
displayed in Table 1. Students’ performances on the three 
subscales were highly correlated, with correlation coeffi-
cients of .903, .903, and .897 for the Geometry–Display, 
Geometry–Number, and Display–Number relationships, 
respectively. The mean score of Geometry was substantially 
lower than the mean score of Display (Z = 9.953, p < .001) 
and the mean score of Number (Z = 8.327, p < .001), while 
the mean scores of Display and Number were close to each 
other (Z = 1.605, p > .05).

LPA

To determine the appropriate number of classes, we com-
pared models from two to eight classes using LPA, and the 
goodness of model fit can be found in Table 2, with smaller 
values of AIC and BIC for a better model. However, AIC 
and BIC should not be used alone for model comparisons 
with plausible values because of a concern about their 
uncertainty (i.e., SD) due to multiple imputation (Chaurasia 
& Harel, 2012). Instead, we combined them with the 
entropy index. In Table 2, one can see that both AIC and 
BIC values decrease with models of more classifications, 
but the trend of decreasing is much alleviated starting from 

the five-class model. Considering the highest entropy 
(0.873) among all models, the five-class model seemed to 
be the best choice. To account for the uncertainty of AIC or 
BIC, two adjacent models with the second and third highest 
entropies, that is, the four-class and six-class models, were 
also selected for analysis simultaneously.

Four-class model.  There were descending trends of all mean 
scores from the first to the last class. Latent Class 1 (Class 
1; 16.9% of the entire sample, N = 2,122) exhibited the 
highest mean scores of all three subscales (Display, M = 
648.16, Geometry, M = 651.40, and Number, M = 649.94). 
Thus, this class was the group with the highest scores across 
all three mathematics subjects, and the group members 
achieved higher than the Advanced International Bench-
mark (625). In contrast, Class 4 demonstrated the lowest 
mean scores across all three subscales (Display, M = 
416.26, Geometry, M = 389.78, and Number, M = 412.34) 
and is the only group whose members performed below the 
Low International Benchmark (400) in geometry, while per-
forming above the Low International Benchmark on both 
the Number and Display subscales; 1,411 students were cat-
egorized into this group. Among the two middle-level 
classes, Class 2 members performed above the High Bench-
mark (550) on all three mathematics domains, and the Class 
3 members performed above the Intermediate Benchmark 
(475) on all three mathematics subjects.

To understand the discrepancy between Geometry and 
the other two subscales in each of the latent classes, we fur-
ther examined the differences in the mean level of subscales 
across different classes of students. Table 3 shows that only 
in Class 3 and Class 4, the two lowest performing groups, 

Table 1.  Means and Correlations Among Three Subscales.

Subscales M SD Display Geometry Number

Display 544.65 75.55 1.0 9.953*** 1.605
Geometry 534.56 84.91 0.903** 1.0 8.327***
Number 543.10 77.53 0.897*** 0.903*** 1.0

Note. Below the diagonal are the correlation coefficients among the three subscales. Above the diagonal are the Z values comparing the mean scores of 
the three subscales.
†p < .1. *p < .05. **p < .01. ***p < .001.

Table 2.  Model Fitting Indices Under Each Classification.

No. of classes AIC SD BIC SD Entropy

2 418,337.558 491.761 418,411.948 491.761 0.827
3 407,617.199 630.861 407,721.35 630.861 0.864
4 401,460.164 547.765 401,594.066 547.765 0.871
5 397,456.498 462.982 397,620.155 462.982 0.873
6 395,239.118 420.827 395,432.532 420.827 0.863
7 393,781.306 467.284 394,004.475 467.284 0.861
8 392,811.421 393.191 393,064.347 393.191 0.849

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion.
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group members’ mean score in geometry was significantly 
lower than in the other two subscales. No significant gaps 
between Geometry and the other two subscales were found 
in Class 1 and Class 2. When we further calculated the dif-
ferences between the mean scores of Geometry and the 
other two subscales (see Figure 1), we found a clear pattern 
of increasing differences from the first to the last class.

Five-class model.  Latent Class 1 (Class 1; 10.36% of the 
entire sample, N = 1,303) exhibited the highest mean score 
(Display, M = 664.01, Geometry, M = 669.45, and Num-
ber, M = 666.34) of all three subscales, which surpassed the 
Advanced International Benchmark (625). Conversely, 
Class 5 exhibited the lowest mean scores in all three sub-
scales (Display, M = 396.00, Geometry, M = 366.67, and 
Number, M = 392.82). All three subscale means of Class 5 
were below the Low International Benchmark (400), with 
the Geometry significantly lower than the other two sub-
scales. The second lowest class, Class 4, performed between 
the Low International (400) and the Intermediate Bench-
mark (475), with the Geometry score (454.31) significantly 
inferior to the other two measures (Display, M = 473.81 

and Number, M = 468.58). Class 3 members performed 
between the High Benchmark and the Intermediate Bench-
mark, and Class 2 members performed between the High 
Benchmark (550) and the Advanced Benchmark across all 
three mathematics subjects. No significant gaps between 
Geometry and the other two subscales were found in Class 
1, Class 2, and Class 3. Similar to the four-class model, we 
calculated the differences between the mean score of the 
Geometry and the two subscales. A similar pattern of 
increasing differences from the first to the last class was 
identified, as displayed in Figure 1.

Six-class model.  With this model, we divided students into 
six groups (see Table 2). The mean score of each class 
decreased gradually from Class 1 to Class 6. Class 1 was 
composed of students with the highest achievement and 
above the Advanced Benchmark (625) across all the three 
subscales, whereas the lowest achieving students were cat-
egorized into Class 6, whose members scored below the 
Low Benchmark (400). In the second lowest performing 
class, Class 5, participants scored between the Low Interna-
tional (400) and the Intermediate (475) Benchmarks. A 

Table 3.  Characteristics of Subscales From the Four- to Six-Class Models (Weighted).

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Four-class model
  Display 648.16

(6.51)
572.37

(6.22)
501.50*

(7.18)
416.26**

(7.35)
 

  Geometry 651.40
(6.57)

565.88
(6.95)

485.46
(7.81)

389.78
(8.06)

 

  Number 649.94
(6.50)

571.27
(6.72)

497.19*
(6.69)

412.34**
(7.31)

 

  n 2,122 4,982 4,054 1,411  
  Proportions 0.169 0.396 0.323 0.112  
Five-class model
  Display 664.01

(4.72)
596.25

(4.36)
537.07

(5.03)
473.81*

(7.169)
396.00**

(7.74)
 

  Geometry 669.45
(4.56)

593.39
(4.42)

525.37
(5.23)

454.31
(7.28)

366.67
(9.68)

 

  Number 666.34
(5.33)

596.30
(5.01)

534.36
(5.27)

468.58*
(6.37)

392.82**
(8.50)

 

  n 1,303 3,599 4,215 2,622 831  
  Proportions 0.104 0.286 0.335 0.209 0.066  
Six-class model
  Display 679.78

(8.70)
617.62

(8.26)
564.89

(8.18)
513.17

(8.55)
455.38*

(8.61)
382.44**

(9.57)
  Geometry 687.08

(10.22)
617.55

(9.62)
557.43

(9.40)
498.41

(8.98)
433.57

(9.33)
351.14
(12.24)

  Number 682.66
(7.89)

618.46
(8.64)

563.56
(8.34)

509.34
(8.50)

449.75*
(8.21)

379.72**
(10.74)

  n 757 2,487 3,681 3,238 1,852 553
  Proportions 0.060 0.198 0.293 0.258 0.147 0.044

Note. Standard errors in parentheses. Means and stand errors are based on weighted data. H0: The subscale and Geometry means are not significantly 
different.
*p < .05. **p < .01.
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significant discrepancy between Geometry and the other 
two subscales was only found in the two lowest performing 
latent classes, Class 6 and Class 5. Similar to above, one can 
find increasing differences between the mean scores of 
Geometry and the other two subscales from the first to the 
last class (see Figure 1).

Summary.  The four-, five-, and six-class models demon-
strated very similar patterns, with descending trends of all 
mean scores from the first to the last class, together with a 
clear pattern of increasing differences between Geometry 
and other subscales’ mean scores along the same line. The 
differences also tended to be increasingly significant from 
the first to the last class. The results implied that the gap 
between geometry and other domains tended to be larger 
when students’ overall mathematical ability decreased. 
Moreover, the greater the number of latent classes, the more 
likely that the lowest performing group members showed 
(a) the poorest performance on all three subscales and (b) a 
lower performance in Geometry than in the other content 
domains. In answer to Research Question 3, we did find a 
lowest performing group whose members performed 
extremely low in geometry (i.e., did not meet the Low 
Benchmark of 400 points) and showed a discrepancy 
between geometry and other areas; however, we cannot 
make the argument that this group represented a population 
with learning difficulties in geometry only, because their 
other subscale scores could be below the Intermediate 

Benchmark (475) but be significantly higher than their 
geometry scores.

LPA With Covariates

Last, we tested whether any demographic factors would 
affect the membership as classified in the above LPA. We 
incorporated the demographic variables as covariates in all 
latent profile models and found very similar results across 
all three models. To save space, here we only presented 
results from the five-class model, which appeared to be 
more representative. Results from other models were simi-
lar and available upon request. Class 5, or the last class with 
the lowest mean scores and the largest discrepancy between 
Geometry and the other subscales, was set as the reference 
group. Table 4 shows the estimates of the intercepts (β0), 
regression coefficients (β1), and related odds and odds 
ratios (ORs), with further explanation below.

Gender.  Girls were used as the baseline group (i.e., X = 0). 
Based on the intercepts and related odds, girls were signifi-
cantly more likely to be in Classes 2, 3, and 4 (β0 = 1.451, 
1.638, 1.203; odds = 4.267, 5.145, 3.330, corresponding to 
Classes 2, 3, and 4 vs. Class 5, respectively) rather than 
Class 5, the reference class. Based on the coefficients and 
related ORs, boys were slightly more likely to be included 
in Class 5 than Class 2, 3, or 4 in comparison with girls. 
Moreover, Table 4 shows that the odds for boys of being in 

Figure 1.  The differences between the Geometry and other subscales under the four-class, five-class, and six-class models, 
respectively.
Note. Left panel for Display–Geometry; right panel for Number–Geometry.
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Class 1 rather than Class 5 was 1.468 times as the corre-
sponding odds for girls (OR = 1.468), the coefficient of 
which was significant (β1 = 0.384, p = .003). The results 
show that girls were more likely to be found in the middle 
classes, and boys in the highest or lowest classes.

Age.  The oldest students were used as the baseline group (i.e., 
X = 0) in the analysis. The significant intercepts and related 
odds suggested that the oldest students were significantly 
more likely to be in Classes 2, 3, and 4 rather than Class 5 (β0 
= 1.515, 1.683, 1.173; odds = 4.549, 5.382, 3.232, respec-
tively). In contrast, the ORs of regression (β1) were slightly 
smaller than 1 for each latent class (ORs = 0.975, 0.890, 
0.850, 0.942, respectively), which indicated that younger stu-
dents had a slightly higher probability than older students to 
be included in Class 5 than in any other classes.

English spoken at home.  Students reported the frequency of 
speaking English in the home environment on a Likert-type 
scale from 1 (always) to 4 (never), with the category of 
always as the intercept group in the analysis. The significant 
intercepts and related odds suggested that students always 
speaking English at home were significantly less likely to be 
in Class 5 than in any other classes (β0 = 0.727, 1.703, 1.794, 
1.248; odds = 2.069, 5.490, 6.013, 3.483, respectively). All 

negative and significant regression coefficients suggested 
that speaking less English at home significantly increased the 
chance to be included in Class 5 than in any other classes 
except for Class 4 (β1 = −0.600, −0.507, −0.338, correspond-
ing to Classes 1, 2, and 3 vs. Class 5, respectively). That is, 
the students who always speak English at home had a greater 
chance to be in Classes 1, 2, and 3 than in the lowest perform-
ing class, Class 5. The change of chance from Class 1 to 
Class 5 was especially salient from being a native English 
speaker to non-native speakers, as suggested by the ORs of 
regression in Table 4.

Spanish spoken at home.  Students reported what language 
was spoken at home other than English, and speaking 
Spanish was set to be the baseline group. The intercepts 
and related odds suggested that students speaking Span-
ish at home were significantly more likely to be in Classes 
2, 3, and 4 than Class 5 (β0 = 1.245, 1.633, 1.245; odds = 
3.473, 5.119, 3.473, respectively). However, speaking 
Spanish was less likely to be in Class 1 than Class 5. 
Moreover, the only significant regression coefficient (β1 
= 1.024, p < .001) and related OR (= 2.784) suggested 
that speaking a language other than Spanish at home sig-
nificantly increased the chance to be included in Class 1 
rather than Class 5 by 3 times.

Table 4.  Five-Class Model With Covariates.

Covariate

Latent class

Class 1 vs. 5 Class 2 vs. 5 Class 3 vs. 5 Class 4 vs. 5

β0 β1 β0 β1 β0 β1 β0 β1

Gender 0.253 0.384** 1.451** 0.024 1.638** −0.043 1.203** −0.110
Age 0.474† −0.025 1.515** −0.117 1.683** −0.162 1.173** −0.060
English 0.727** −0.600** 1.703** −0.507** 1.794** −0.338** 1.248** −0.155†

Spanish −0.286 1.024** 1.245** 0.105 1.633** −0.268 1.245** −0.260
Likemath 0.893** −0.637** 1.734** −0.368** 1.787** −0.218** 1.275** −0.149*
Likesci 0.644* −0.335** 1.617** −0.264** 1.755** −0.218** 1.289** −0.200**
WvsB 1.277** −4.116** 2.228** −2.914** 2.216** −1.866** 1.500** −0.916**
WvsH 1.390** −2.364** 2.290** −1.637** 2.255** −0.998** 1.544** −0.555**
WvsO 0.581 −0.271 1.637** −0.460* 1.778** −0.416† 1.244** −0.262

  β0’s odds β1’s OR β0’s odds β1’s OR β0’s odds β1’s OR β0’s odds β1’s OR

Gender 1.288 1.468 4.267 1.024 5.145 0.958 3.330 0.896
Age 1.606 0.975 4.549 0.890 5.382 0.850 3.232 0.942
English 2.069 0.549 5.490 0.602 6.013 0.713 3.483 0.856
Spanish 0.751 2.784 3.473 1.111 5.119 0.765 3.473 0.771
Likemath 2.442 0.529 5.663 0.692 5.972 0.804 3.579 0.862
Likesci 1.904 0.715 5.038 0.768 5.783 0.804 3.629 0.819
WvsB 3.586 0.016 9.281 0.054 9.171 0.155 4.482 0.400
WvsH 4.015 0.094 9.875 0.195 9.535 0.369 4.683 0.574
WvsO 1.788 0.763 5.140 0.631 5.918 0.660 3.469 0.770

Note. β0 = estimates of the intercepts; β1 = regression coefficients; OR = odds ratio.
†p < .1. *p < .05. **p < .01.
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How much students liked mathematics.  Students reported 
how much they liked mathematics on a Likert-type scale 
from 1 (like) to 3 (not like), with the category of like as the 
intercept group. The significant intercepts and related 
odds suggested that students who liked mathematics were 
significantly less likely to be in Class 5 than in any other 
classes (β0 = 0.893, 1.734, 1.787, 1.275; odds = 2.442, 
5.663, 5.972, 3.579, corresponding to Classes 1, 2, 3, and 
4 vs. Class 5, respectively). In contrast, negative regres-
sion coefficients were significant, and suggested that stu-
dents who did not like mathematics had a higher chance to 
be included in Class 5 than in any of the other classes (β1 
= −0.637, −0.368, −0.218, −0.149; ORs = 0.529, 0.692, 
0.804, 0.862, corresponding to Classes 1, 2, 3, and 4 vs. 
Class 5, respectively). For example, if the preference for 
mathematics decreased by one unit, the odds of being in 
Class 1 relative to Class 5 dropped by about half (OR = 
0.529).

How much students liked science.  Students reported how 
much they like learning sciences on a Likert-type scale 
from 1 (like) to 3 (not like), with the category of “like” as 
the baseline group in the analysis. The intercepts and 
related odds suggested that students who liked science 
were significantly more likely to be in Classes 1, 2, 3, and 
4 than Class 5 (β0 = 0.644, 1.617, 1.755, 1.289; odds = 
1.904, 5.038, 5.783, 3.629, respectively). Similar to above, 
all regression coefficients were significant and negative, 
suggesting that the students who did not like learning sci-
ence were more likely to be included in Class 5 than in any 
of the other classes (β1 = −0.335, −0.264, −0.218, −0.200, 
respectively).

White/Black.  Students’ race was coded into a set of dummy 
variables. White students were set as the reference in the 
dummy variables. The significant intercepts and related 
odds suggested that White students were significantly less 
likely to be in Class 5 than in any other classes (β0 = 
1.277, 2.228, 2.216, 1.500; odds = 3.586, 9.281, 9.171, 
4.482, respectively). All regression coefficients were neg-
ative and significant, showing that Black students were 
more likely to be included in Class 5 than in any other 
classes in comparison with White students (β1 = −4.116, 
−2.914, −1.866, −0.916, respectively). It is noteworthy 
that the regression’s ORs were 0.016, 0.054, and 0.155 for 
Classes 1, 2, and 3 vs. Class 5, respectively, suggesting 
that Black students were about 70, 20, and 6 times more 
likely than White students to be included in Class 5 than in 
Classes 1, 2, and 3, respectively.

White/Hispanic.  Similar to above, White students had a 
higher probability of being in each of the latent classes 
other than the reference latent class, Class 5. All regression 
coefficients were significant and negative, suggesting that 

being a Hispanic student significantly increased the chance 
to be in Class 5, the lowest performing class, than in any 
other classes in comparison with White students (β1 = 
−2.364, −1.637, −0.998, −0.555, respectively). Further 
analysis with the ORs of the regression coefficients sug-
gests that Hispanic students were approximately 11, 5, 3, 
and 2 times more likely than White students to be in Class 5 
than in Classes 1, 2, 3, and 4 (ORs = 0.094, 0.195, 0.369, 
0.574, respectively).

White/Other races.  This dummy variable compares White 
students’ chances of being in Class 5 versus students of 
Other races (i.e., non-Hispanic/Black). Similar to above, 
White students had a lower probability of being in Class 5 
than in any other classes. In contrast, being a student of 
Other races increased the chance to be in Class 5 than in any 
other classes in comparison with White students, and the 
increment was significant or marginally significant for the 
two middle-achieving classes, Classes 2 and 3 (β1 = −0.460, 
−0.416, respectively).

Summary.  As the results showed in the above five-class 
model analysis, all covariates were significantly associated 
with class membership in specific ways. In summary, the 
following conclusions can be reached: (a) Female students 
were more likely to be classified in the middle-achieving 
groups, and male students were more likely to be classified 
into the advanced or lowest groups; (b) older students were 
more likely to be classified in a higher achieving group than 
in the lowest performing group; (c) students who spoke 
English at home had a greater chance to be classified in a 
high-achieving group than in Class 5; (d) students’ prefer-
ence for mathematics and science significantly decreased 
their likelihood to be in the lowest achieving group; and (e) 
Black and Hispanic students who scored lower on the 
Geometry subscale were more likely than White students to 
be classified in the lowest achieving group.

Discussion

This study aimed to portray a profile of students who per-
formed poorly on a geometry standardized assessment by 
investigating the TIMSS 2011 mathematics data of fourth 
graders in the United States. We aimed to answer four major 
questions: (a) How did U.S. students’ geometry perfor-
mance compare with their performance on the other math-
ematics subscales? (b) What were the patterns of student 
achievement among the mathematics subscales? (c) Was 
there a group of students who demonstrated specific diffi-
culties in geometry only? and (d) Which demographic vari-
ables contributed to students’ classification in the group 
with geometry difficulties?

First, results suggested that, in general, geometry was 
the weakest mathematics content domain for fourth graders 
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in the United States as reflected in the comparison of mean 
scores on the mathematics subscales in the TIMSS 2011 
data. This finding echoes a previous study analyzing the 
TIMSS 2011 data that reported that among the four mathe-
matics content domains (i.e., algebra, number, data and 
chance, and geometry), geometry was the weakest area of 
proficiency for U.S. eighth graders (Provasnik et al., 2012). 
In contrast, Shanghai students scored higher on the Geometry 
subscale compared with Display and Number (Organisation 
for Economic Co-Operation and Development, 2014). A 
recent cross-culture comparison study (Kern & Henrick, 
2016) suggested that, although Chinese teachers outper-
formed U.S. teachers on many dimensions of mathematics 
teaching quality, the higher achievement of Chinese stu-
dents was primarily driven by geometry instruction: In 
geometry instruction, the study showed that Chinese stu-
dents had more opportunities than U.S. students to develop 
their conceptual understanding and to make explicit con-
nections between representations and methods for solving 
problems.

In answer to our second and third research questions, 
“What were the patterns of student achievement among the 
mathematics subscales?” and “Was there a group of stu-
dents who demonstrated specific difficulties in geometry 
only?” we employed LPA to classify the whole student pop-
ulation into different groups according to the patterns of 
performance across the three mathematics domains. We 
found that students with the lowest Geometry subscale 
scores typically also had the lowest achievement in other 
mathematics domains. When we analyzed the four-, five-, 
and six-class models, we found a pattern that showed the 
more specifically and the greater number of groups into 
which we categorized the students, the more likely we were 
to find a group of students who showed the lowest scores on 
all three subscales, with a broader gap between geometry 
and the numerical mathematics domains. That is, students’ 
geometry performance was consistent with their perfor-
mance in the non-geometry domains, and students with the 
lowest geometry performance was most likely to be found 
in the group of students with the poorest overall mathemat-
ics performance. That is, the more problems the students 
displayed with mathematics in general, the greater difficul-
ties the students were likely to manifest in geometry 
performance.

In sum, using the TIMSS fourth-grade mathematics data, 
we did identify a group of students (i.e., the lowest perform-
ing class in each of the three models) who showed poorer 
performance in geometry than in other mathematics areas; 
however, these students neither reached the average or 
above-average benchmarks in other mathematics domains. 
Generally speaking, students with the lowest mean geome-
try scores also had very low mean scores in other mathe-
matics areas, whereas students with high mean scores in 
other mathematics subscales also had high mean scores in 

geometry. The students who performed poorly in the numer-
ical areas tended to have even poorer performance in geom-
etry, but such a discrepancy did not exist with the 
high-performing and average-performing students.

Results contributed to the literature by showing that 
geometry performance as measured by a standardized 
assessment is not independent of performance in other 
mathematics areas, and likewise, students’ poor perfor-
mance in geometry does not stand alone from their difficul-
ties in other mathematics areas. Results supported the 
theoretical proposition that performance in different math-
ematics domains is intercorrelated and reflects mutual 
underlying cognitive abilities (Peng et al., 2018). A student 
with poor spatial abilities may manifest difficulties in many 
mathematics areas (e.g., story problems; van Garderen, 
2006) and other STEM areas (Wai et al., 2009) rather than 
in geometry only. Although it sounds plausible to categorize 
a group of students who demonstrate difficulties only in 
geometry due to poor spatial abilities, our results from the 
TIMSS 2011 data did not find evidence to support this 
hypothesis.

To answer the fourth research question, “Which demo-
graphic variables contributed to students’ classification in 
the group with geometry difficulties?” we examined the 
influences of various covariates on students’ probability to 
be classified into the geometry difficulty group, and found 
that being White, English-speaking at home, and liking 
mathematics and science significantly decreased the stu-
dents’ probability to be classified into the geometry diffi-
culty group. In contrast, being non-White and disliking 
mathematics and science significantly increased the chance 
to be classified into the lowest achieving group with par-
ticular geometry difficulties. These sociocultural-dependent 
predictors again indicated that geometry achievement is 
significantly influenced by many non-cognitive factors, 
such as ethnicity, culture, language, and interest.

It has been well established that culture and education 
play an important role in students’ mathematics achieve-
ment (Agirdag et al., 2011; Martin, 2000; Starkey & Klein, 
2008). Although intuitive geometry is considered to be 
culture-free and to rely on cognitive abilities (Giofrè et al., 
2013), the results of the present study indicated that as 
early as fourth grade, students’ geometry achievement has 
been significantly influenced by many educational and 
cultural factors. Fourth-grade geometry in the TIMSS was 
primarily about basic spatial manipulation tasks; however, 
even these so-called “intuitive geometry” tasks that seem 
to be cognitive-based were significantly affected by stu-
dents’ cultural and educational backgrounds. Echoing pre-
vious research, a student’s social and cultural background 
can influence his or her academic achievement because of 
many factors, including parental involvement (Lee & 
Bowen, 2006; Mau, 1997), self-concept (Chiu & Klassen, 
2010), school resources (Roscigno & Ainsworth-Darnell, 
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1999), social history context (Martin, 2000), and commu-
nity forces (Martin, 2000).

Previous literature reported a small effect size of male 
superiority in geometry performance (Hyde et al., 1990). In 
this study, being a girl significantly increased students’ 
probability to be included in an average-achieving class, 
whereas being a boy significantly increased the chance to 
be classified into either the highest achieving class or the 
lowest achieving class. Previous literature repeatedly dem-
onstrated that spatial ability is the only cognitive domain 
that shows the most robust gender differences favoring 
males, especially in the area of spatial rotations (Feng et al., 
2007; Terlecki & Newcombe, 2005); however, the results of 
this study suggested that although males were more likely 
to show the highest achievement scores in geometry, they 
also had a greater probability of showing the lowest achieve-
ment scores in geometry, suggesting that geometry achieve-
ment is not completely dependent on spatial abilities but is 
a function of multiple cognitive and non-cognitive factors.

Limitations and Future Research

The present study has two major limitations. First, we ana-
lyzed fourth graders’ TIMSS 2011 Geometry subscale 
scores to identify students with difficulties in geometry. The 
students who were classified into the low-achieving group 
in this study performed poorly on the TIMSS 2011 assess-
ment and did not meet the Low International Benchmark. 
However, we should be cautious when reaching any conclu-
sions about labeling these students with “Learning 
Disabilities (LD)” because these low-achieving students 
were not necessarily students with learning disabilities. 
Some students do well in class activities but are not good at 
taking standardized tests (Kearns, 2011), and it is widely 
recommended (Nitko & Brookhart, 2014) to adopt multiple 
measures (i.e., teachers’ reports, classroom observations, 
standardized tests, curriculum-based assessment) to ensure 
the validity to refer a child to Tier 2 interventions. While 
many of the lowest performing group in this study may 
have geometry learning difficulties or learning disabilities, 
TIMSS does not provide data regarding students’ special 
education status. Future research is warranted to examine 
patterns of students’ abilities in different mathematics areas 
among students who have been officially diagnosed with 
mathematics learning disabilities.

Second, we need to be cautious regarding conclusions 
about whether there is a group of students who achieve low 
scores only in geometry but achieve average or above-average 
scores in other mathematics domains. Typically, LCA or 
LPA is carried out in an exploratory manner in which a 
strong a priori hypothesis does not exist regarding the num-
ber or nature of the latent classes underlying the data 
(Hoijtink, 2001). For a future study, when there is a well-
developed theory to hypothesize the classes of students, a 

more confirmatory approach that allows for testing specific 
hypotheses will be used to verify the existence of hypothe-
sized classes.

Implications for Educational Practice

Although this study does not provide direct implications for 
educators as to how to provide effective interventions to 
improve geometry performance of students with difficulties 
solving geometry problems, results of this study portrayed a 
larger picture of the geometry performance of U.S. fourth 
graders and the patterns of U.S. students’ achievement in 
three mathematics domains assessed by TIMSS 2011. First, 
the significantly lower performance in geometry than in the 
other two mathematics domains among U.S. students over-
all signifies a strong need for greater attention from policy 
makers and educational practitioners. In particular, special 
attention needs to be paid to students who are experiencing 
mathematics learning difficulties, as the results of this study 
showed that students with poor achievement in numerical 
domains tended to have even poorer performance in geom-
etry. Given that geometry topics comprise only a relatively 
small part of the mathematics curriculum that is required to 
be taught to elementary school students, teachers and par-
ents often do not address the importance of providing early 
geometry intervention to students who have mathematics 
learning disabilities or who are at risk. In fact, the results of 
this study suggested that students with overall difficulties in 
mathematics tend to experience greater difficulties in geom-
etry than in other mathematics areas; thus, providing inten-
sive prevention and intervention focusing on geometry 
subjects is warranted.

This study also sheds light on the importance of teach-
ers and policy makers understanding students’ geometry 
performance from a sociocultural perspective. Many 
STEM areas, including mathematics and geometry, are 
not solely determined by students’ cognitive abilities or 
personal efforts. Even for tasks that are considered “intui-
tive geometry,” students’ performance can be influenced 
by many sociocultural factors. In comparison with the 
rich literature and resources of mathematics remediation 
programs that help students with mathematics difficulties 
to learn using cognitive approaches, less research and 
practice exist in terms of how to address students’ math-
ematics learning problems from a sociocultural perspec-
tive (Waite, 2017).
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